発明（ ）名称

発明の背紧および閈遇技術

【0001】本発明は，王雨っ／雨至菜子に閉する。より詳細には，各種アクテ ュエータや各種トランスデュ・サ，スは，周波数領域機能部品（フィルタ），ト ランス等の振動子，共振子，発振子，ディスクリミネータ等の能䡃素子，㐫るい は，趏咅波センサ，加速度センサ，角速度センサ，衝然センサ，算量センサ等の
企幸千に関する。
［0002］近年，インクジェットプリンタに便用されるプリントヘッドのイ ンクボンブ寺として圧㫣ノ「䉓式アクテュエータが剂用されている，例えば，特開

例か開示されしている。
【0003】 インクジェットブリントヘッド140は，インククノズル部村14 2 と圧電，’要丕膜型アクデユエータ」45とが接合一体化されることによって形
 146に供給されしたインクが，个゙ンクノバル部材142に設けられした」がルな1 54 守通じて，䝷出されしるよ，ちになっつ「いる。
「0004】より詳細にに，圧雪ノ電至脘型アリチュ，「ーシ145 は，基体部 144 （特許文献1においなセラミッシス窒体）と，基体部144に一体的に形

 ートリ 68 が，スベーサプレート170を挟えで重な合わざずてなら傋造をもつ「一休的に形成されじいる。接絖ごレート168には，イ゙シクノバル部材142 ひオリンィススン゚レート150に馱或されした通孔156及じオリンィン孔158に
 それだれ形成され，第一ひ通通用開い部172は，通孔1 b6と略同一乃至若み大きめか心怪とされている一方，第二ひ速通用開い部1／亿は，オリフィス孔」 58より 所定寸法大紅とされている。スベーサブレート1 1 0 には，長手知形状ひ窓部1／6が，復数個形成されている。そして，それ5各忩部176に対し て，㥅総ブレート168に設けらすた各一つの第一の連通片開口部172及び第二の連通用開口陻174が開口せしめられるように，かかるスペーサブレート1 70 が接䊺ブレート168に対して重る合わされている。このスペーサブレート 170 における，接続ブレート168が荲ね合わされた側とは反対側の面には，
 1 1 6 の開口が愛至されている。それによって，かかる基体部141の内部には ，弟一及び贸二の屒通用閂口部172，171を通じて外部に連通されたキャビ ディ146が帅成されている。

 れし，優れした作動特性を发定じて得るごとが出米るとともに，谷易に作製出米，コ シバクト化が有利に図られるものである。

 いこ問題が生じた。
．発明な概要
 あコて，その目的とするところ法，接曾䛥を用いて橫層した構造を持たずに容易 に高集䅡化が可能であり，更に，同一駆動電圧で，よ，り大きな変位が得られし，心容速度が禹く，発生力が水きい，優れた圧要ノ電歪脱型素于と，その製造方法を
留する応力が，圧電ノ軋歪吽料木来の特性発現を阻み，十分な変位が発生出承－C いないごさが推定され，以下に示ず発明に到達した。
〔0008〕即ち，木発明によ才試，基休部と，そり基体部上に設けられ1電

部とは烍成により一体化され，悬体部が，チタン元䅁を台有するセラミックスで
層ひ電極㙂により投影された投影部のデタン元卖の含有量が，非投影部のチタン元索む㗊有量亡異なる

 こ元素ひ含有是が非投影部ひチタン元素ひ含何量上り多いことが好ましい。

製浩左法が提供さす。る。圧雷ノ雷歪膜型率子の第 1 の犁造方法（単に第1 の製造

 ら娪成により一体化されて，基体部が，チタン元幸を含有するセラミッシスで愽成

歪膜型素子の第1の製造方法においてい，霄㥛膜の䄪枓に合有ざする酸化チえこ の平均愔子径は： $0.05 \sim 0.4 \mu \mathrm{~m}$ であることが汙むしい。

战により一体化されて，基体部か，チタン元素宅含有なるセラミッタスで横成さすし

方を指す。

図面の簡単な説朋

図 3 は，本汧朋に倸る圧雷 $/$ 雷歪嗼型喜子の他の奉施態様を示す断正図である
 －ぐある。
 である。
図6は，本発明に係る圧雷ノ雷昰脱型索干の一実施例を小寸罒であり，図3に相当する実施的槏の実際の一形状例をぶ方㭛面図である。

図7は，本発明に倸る圧電ノ需歪膜型素了・の一実施例を示す図であり，冎3に相当する実施熊様の実際の似の形状例を示す断面関である。

恨当する丰施態样の表際の更に他の形状侧を示す断面図である。
図9は，従来けアクチュエータか他い一例を示ず断面図である。
図10は，従来のソクチュエータの他の一例を示す包で，図りのAA断面䍜 である。
図11は，実蚛例において作製した圧晏！電企腹型系子を示す断面図でする。
図 12 は，図11に示される巫態／龟歪膜型素子を更に部分拡大した断面図で ある。

図13は，実施何に才らいて静電谷量を測定した謎の2つの厂電ノ電歪膜の接統 の態棈（並列）を表す図である。

仆ましい実施熊梌の説明
施し形的を貝体的に誢明するが，本発明心，これらに限定されて解积されるもい
㮔々（1）嵏更，修止，收定を加え得当ものである。

 とから構成さむる。

 とを冾し，且つ，作期部と基体部とは焼成により一体化されており，基体部分，
上用乃至最下屑とは，基体部側安下（方向）とする相対的な上下字素味し，下（
部け需極にこいいぐも同様ぐある。
〔0016］作動部と甚体部とが焼成により一本化されてなる里電ノ゙電歪脱型

収縮力を收収出来ずに，圧電ノ電歪暯に大きな焼成応力が残存してしまうからで
 ているため，圧管ノ筺企嗼の炕成温度程度の高温時に，外力によって適度に変形
 かかっこても，基体部自体がその収絬力を吸収出来，圧電／電歪䠑に大穵な焼成応 カを残留させることがない。従って，本発明に倸る圧電／電丕膜型素了法，所謂 バルク体こ同様な材料特性を有する圧電ノ電歪膜で塂成される素子になり得る。
10017】上節励果を生じ得る空体部に含有されるテタン元采は，悬体部全
 により投説された投影部と非投影部上にむいて異なることが好ましい。より好ま しくは，投影部が非捜影部よりチタングフ素の含枟量が务い態样である。これは，

多くるることにより，残留応力の小さい圧管く地金䐜が得られ，长孖な材料特性 に基づく大翏位が発規出来，一方，非投影部のヲタン元函量が小さいので，基体部の機珹的強供を踓持することが「能である。
 ，好ましい含有量は，（作娌部ひ）最下層ひ」電極䐜により投影された投影部にお いで，酸化チジン相当量ぐ0，3～4質量\％ぐあり，より好ましくくば，4～2

 は反対の夕向から，基休部の深さか向に（内部に）向けて，作動部の最下首じ電
 とは，其休部の投影部以外ないう。
〔0019〕甚休部を满成する材料は，後述するように多ぐひセラミック，人材料から選定ずることが出半，限定されるもひびはないが，好きしぐは酸化ジルコ」

ご市ムである。基休部を薄肉にした埸合に，より機械的強度が大きく勒性が高く
 ためチジン元卖ひ添加効果を有㚵に利用出来るからである。
【0020】基体部0陧さは，限定されるも0つでないが，好ましくはう $0 \mu \mathrm{~m}$
基体部を文持するためにキッビティ㝸造であってもよい。これは，製造方法に基 づく厚さであり，後述するように，予めチタン元素を含有した材料を荎体部に用 いるのではなく，電灀膜から熱処理により拡散させる場合には，上記厚さがテタ ン元素を登体部の深さ方向に実質的に均等に存任させるに好ましいからである。
粌から選定することが出承，限定されるものではないが，臼金を主成分とする材料で満成されることが杄ましい。何故ならば，圧管ノ䉓企材料との高温時の必応性が小さく，入，融点が高く高温でも安足性が島いからである。特に，最下厚の電棫脱には酸化テタンを官さ曰金を探用することが时きしい。基位部ととともに
 より问上するからである。以，恶柜脱は少なくとも基休部と接する最下層にむい
 ことか好ましいい。用常は」 $5 \mu \mathrm{~m}$ 以下゙で設計されし，より好ましくくは $5 \mu \mathrm{~m}$ 以下 ある。

部では，複数の圧電ノ電至䐜を櫝屏する場合に，徐かに薄くして形成するにとが

$\mathrm{t}_{1} \leq \mathrm{t}_{1-1} \times 0.95$

電ノ電歪㷬より大きく歪むようにすることにより，曲げ扮率を高め，屈曲変位を

より有㹢に灮垷することが可能となるからである。
 ，雳正膜の 1 層当たりの厚さを例えば $30 \mu \mathrm{mW下亡}$ 以薄くして，これを $2 \sim 4$ 居積層することにより，より厚い浣アスペクト比の作動部が得ることが出来る。こ のような作動部は，【然／䉓歪膜1層当たりの厚さが同じで工電ノ電歪膜が1層 だけの作動部と比皎すると，屈曲変位する部分に高い瞓性が得られるので，床答
 をな発生力が得られ，高剛性でありながら相対的に大学な変位を得られる，西に
 けの作動部と比較するこ，同 駆動電圧における電界強坡がより高くなり，相対的に大きな変位し発生力を得ることが可能である。

 れる㙄怠には，その特性は，圧電定数で， $1 \mathrm{~d}_{31} \mid$ が $50 \times 10^{-12} \mathrm{~m}$ ノV以上であ る膜を㟫用することが好ましい。より好ましくは，\｜ $\mathrm{d}_{31} 1$ が $100 \times 10^{-12} \mathrm{~m}$ ， V以上の膜である。又，历電ノ電歪摒と称しているが，本明細書に抽いて工電！

 －又，分極処理が必要か出かによっても限定されない。
 を参照しながら，より貝体的に說昭する。先ず，実施䖁様について説明する。
一侧を示方断面図である。从，図ちは，本発明に係る必電ノ「電歪脱型表子の構造 を說明するためひ图であり，1 つの基体部に複数の作動部が佛わり，且つ，其体

〔0027】龱1に示す圧電」奄歪娦型素子11は，セラミックスで構成され る基体部 44 上，基体部 44 上一体的に形成ざてた作助部 78 とで構成される。

基体部 44 沬，限定されるもの心はなないが，下記ひ通り絭柖まりが向上するごと から，複数ひ要い平板状ひセラミックスプレートが積層した茶造を呈しているご とが好きしい（図ち参照）。焼成して基体部となるグリーシシーート估柔軟性を有 するため，もともと取り扱いが難しく，例えぼ，变成炉へ，の搬人封において支狩
 たりし易いといった問题がある。袮数のセラミックスブレートを積層した满造は ，より剛性が高めちれるため，取り扱いに起因する不良品の発生を抑えることが可能である。

〔0028〕至体部44の内部には，図1に示されるような逼通用孔部72， 71 を递じて外部と連通するキャビティ16が形成されている。このキャビテ・ィ
 が䚲成されたセフミックスブレートを，迪通用孔部「こ，1 1を有するセフミッ クスブレートを今び他のセラミックスブレートで重ね合わせて得ることが出来る
 （連異用孔部 72，74が形成された面とは反対側ひ外面じあって，其休部44 ふ以部に形成さすしたキャビティ46に対心する位吾に，作桠部78を有しくいる

膜て7と上部の電湴膜 75 とか間に通電すると，圧電ノ電正膜79に電界作用加

 られて他面が半ャピティ46に対面してなり，薄肉であることから，作動部78の
 ン相当量で0．3～4質量\％で含有されるセラミッシスで僙成をれ，且こ，下部 か電慚醍77により投影されてる投影部66aと非投影部66日と汃らな口，投影
 すれば，投影部66日ではチタン元㞼が酸化チシン相当员で2． 5 贸呈\％，非投
 る。尚，基体部 44 では，振動板 66 以外 0 部分を横成するセラミックスに，チ タン元索が含有されていてもよく含有されていなくてもよく，限定されるもので はない。
元䒺を含有するセラミックスで臂成されることから，悓に述べたように，㘳計に
安って宅企材粌本来の特性が発垣し，より高集䋶な状態であっても大きな妥位を得 ることが的能である。又，多量生应する䵮合に盆位特性のバフツキが，上り少な い。振動板 660 厚さとしては，好きしくはち $0 \mu \mathrm{~m}$ 以下，おり好ましぐは20 $\mu \mathrm{m}$ 以下，更に好ましぐは2～10 $\mu \mathrm{m}$ 程莫である。同じく既に述べたように。 ごすような厚さとすること行より，チダン元幸を振動板 66 な原さか問にせ一に

【0033】セフミックスで棤成される基休部がシン元籴の含有呈は，電子
用いで定量するごとが出米る。具体的な手段は以下な通りである。纯ず，作墅し に质電ノ筺歪膜型晜于を切断し，鋀面研至して，図1のような断面を得ふ，そし て，電子綵の即速電圧 15 kV ，照射雪流50nAの条件で，芯体部に委子ト゚ー
 LT，基体部中に将在するチタン元䓝の虫を求める。渭企は，被榆体上において ランダハに5点行い，その平埝完定豆結果とする。

的な形態け圧電ノ電歪暯型索于で西万。

70 を合な全 5 首に積層されていて，作動部のトータルの原さが同じてわ，压電

烍成応力が残留し易くなるが，厈雷ノ霓政营型素子108では，そのよこな拘束

 79 の楦呞数が2であふので，幅（通常は水平か問長さ）に対しに高さ（通常は垂宿方向長さ）の比が大きい，所調高アスバント比の作䣦部を形成することが，
易である。高アスペラト比の作動部は，用本客位する部分に高い剛性が得ら行る ここからより速い応答速度を得ることが山来るトに，複数の圧雷ノ雷炡虞に恋们
大きな変位を得ることが可能である。尚，図示しないが，圧雷ノ電歪膜型帝子1
 チタン相当量で0．3～4質量\％で含有され，日つ，振動枢 66 は下部の㸓極愺 77 により投影される投影部え非投影部えからなり，投影栺に非投影部上り多く のチタン元票が合まれている。
 3 が㕕形状に積み重なっておすり，電極膜の幅も上部にいくほど狭くなりている任
 ので多并構造を比較的窓易に作り易い上いうメリットを有する。圧電ノ電丕膜型买•f123は，先に説明した圧電／電歪膜型素子108の作動部78が圧電／電企膜 7 9 を 2 層有するのに对して 1 層增の 3 首からなり，尚更に，大きな発生カ と入きな変位を得るのに嗵している。チタン・元素含有に偊る特徴を有する点は，

〔 0 0 3 8 】 図3，図 4 に示す巫電／電歪膜型素子 1 0 8，123に打いて，基体酣 4 4 は㴗い複数のセラミックスブレ・トを䅡層したものでもよく，1枚の所定の厚さを有するセラミックスプレ・ートを加工してキャレ゙ティ46を設けたも

ので2よい。基体部 44 上には，1 又は，2以上にな禛数び作動部 78 を焛列ずるこ とが出来ら。

有無により限定されるものではない。又，横成要素の形状や配置は特に限定さそ るわけでない。作䣦部を構成する各膜は，用途に公わせて如何なる形状及び配置 であっても婹わない。形状は，三角形，四角形然の多角形か，円，㭞円留の円形 だけでなく，格チ状等の特旅形状であってもよい。枼体部の形状は，特に矩形形状に限られるものではなく，H形でも構わず，三角形等の四角形以外の多阿形で
部の外面側に作動部を配亘ずる態様を採用することが，作製し曷く，キャビン・1内をより大きく圧力稄動させることが出来る点において好ましいが，必ずしも限定ざしろわけではなく，作娌部を基休部内のキャビァィ内面側に形成しても上く －孖方に形成しったもよい。
以゙，概ね矩形であり同じ形の複数け作動部が，同一の㧼体部上に，同一な甚体部

望まわる。例えば，ベンクッシェェットプリンタのプリントハッドのアリチュールータ

力による平雷ノ雷昰膜の特性出作；が間題となっていまが，本発明に倸る圧雷ノ雷

 えこをが可能である，
等について個別县体的に説明する。先ず，チタン元索を含有するセラミッシスで

搆成される基体部について説明する。
10042】基本部を錐成する材料さしては，セラミックスの中で，例えぽ，酸化ジルコニウム，酸化アルミニウム，酸化マゲネシウム，品伈アルミニウム，笔化理菜を，好適に使用出来え。より好末しい材料は酸价：ジルコニウムである。 ス，その酸化ジルコニウムの中でも，完：尒安定化酸化ジルコニウムを主成分とす

 が小さいこらから最き好適に採用きれる。
 ムにおにてね，以下にホすと抢りに安宁体好理された，まのが奸ましい。即ち，酸化ジルコニウムを定定北せしウる北合物としては，酸北－ケットリウム，酸化－ケッ テルビウム，酸化セリウム，酸北カルシウム，及び酸化マグネシウムがあり，少 なくこもそのう亡の・つの化含物を添加，含有せしめるこににより，酸化ジルコ ニウムは部分的にあるいは完全に管定化される。その灾定化は 種類の化合物の添加のみならず，そえに䚰合物を組み合わせて添加することによっても，目的と する酸化ジルコニウムの家定化は可能で㐫る。
【0044】 それぞれの化合物の源加晊ししては，酸化イットリウムや酸化•1 ッテルビウムの埸合にあっては，1～30 Eル $\%$ ，好ましくね1。 \％，酸化セリウムの場台にあっては，6～50モル $\%$ ，好ましくは $8 ~ 20$ ミル \％，酸化カルシウムや酸化マグネジウムの場合にあっては，5～40モル $\%$ ，好 ましくは5～30モル\％とすることか望ましいが，その币でも特に酸化イットリ ウムを安定化剤として用いることが好言しく，その場公においては1．5～10

囲で添加することも好ましい。
［001b］上記した機㭜的強度と安足した結品祖が得らそるよう，酸化ジル コニウムの平均結晶粒子径を 0.0 っ～3 $\mu \mathrm{m}$ ，好こしくは1 $\mu \mathrm{m}$ 以下とするこ とが恝ましい。又，上記のように䑁体部については，酸化ジルコニウムではない偅々のセラミックスも用いることが出來るが，その其体部の構造が複数層のセラ

ミッシスン゚レートからなり，且ご，キャピティを有する構造なような場合にば，

 ために，奖休部を構成するセうミックス村料は，塱化チタンを0．3～4．O質
 しい。添加する酸化チ戸ン陌料は，メジアン径で $0.05 ~ 0.4 \mu \mathrm{~m}$ 又は BE T比寅面櫕で $5 \sim .8 \mathrm{~m}^{2} / \mathrm{s}$ の店䊅を用いることが好ましい。このような原料を やいることにより，チタン元素を基体郖（振娌板）に均一に存任させることが出
 ふン化合物であっでも檘わない。

 －問われしるも山ではないい結品質ぐも非㫛質ぐもよく，又，半皆休やセラミッター人や強㹸昆休セラミックス，あるいは反強誘雪休セラミックンを用いることも可能ぐある。用途にふじく適宜選択し採用ずればよい。
〔0048】思体的な材料としては，ジルコン䣲鉛，チタン酸詒，マプネシウ
 ンチモンスズ酸鉛，マンリ゙ンタングステン酸結，コバルトニスプ酸結，チタン酸 バリウハ，チタン酸ナトリウスビスマス，ニンブ酸みりウスナトリウス，タンタ ル酸ストロンテウィル゙スマスス等を単独であるい沙混合物として含有するせラミッ

定し太組成のめのが得られて点えいて，ジルコン酸チタン酸堸（PZT系），及
 ン酸ホトリウウト゚スマスを主成分とする材料，垔には，チタン酸柋ージルコン酸
 ッタルと酸化粎意を㳅加した材料皮好適に用いらもっる。
〔0049］豆に，上記材料に，ランタン，カルシウム，ストロンチウム，干

リン゙デッ，タングステシ，バリザム，ンオプ，亜鉛，：こッケル，マングン，セリ ウム，カトミウム，クロム，コバルト，アンチモシ，鉄，プットリシム，タンタ ル，リチウム，ビスマス，スズ等た酸化物等を，単独で若しくな淹合した，浱加 したセラミックぬを用いてもよい。倒えば，土成分であるジルフンン酸錎とチョン
 により，沉電買や工電特性を調整可能上なる尔の利点を得られる場合がある。【0050】作致部の電極宽の材料については，室温で固体であり，後述する
 で構成されていることが好ましい。例えば，ソルミニワム，チタン，クロム，鉄

等の全属单体，洁しく法，これらけ台金が用いらすい，更に，これらに圧委，ノ電裂脱，あるい法，上記した具休部と同じ树村穴分散させたサーメット付料を用いて もよい。より好ましい材料は当空ご方る。

 ～シ． 0 質量\％，添加した吽料を用いる。このような材料汃らなる雷極を軗処理 することによっでチジノ元素を甚体部㑡に的散させ，基体部（振動板）にチタン元卖な存在させるようにすることが出来る。㳅加する陳化チタン原粏は，メジア
 ことが好まてい。酸化チタンあ雷唡材料な均一に洪合亡ることが山来，導体膜の

形成与洗に倲存するこよがあるの例えば，図3に示す本発明に倸る圧電ノ電歪膜型素于108においては，セラミックスで偁成されて基体部441に下部の㕿極

する場合には，電獡膜77にな，その圧電ノ電歪膜79の焼成温度に抽いても变价しない白余等の高融点令属を使用する必要が它る。中間の雨極膜？ 3 च同様で

少なならず作励部の変位を低下させる要因となり得るので，特に，圧雷／需昰膜

金レジネートベースト，白金レジネートペースト，銀レジネートペースト管の材料届用いることが好ましい。
广法について説明する。本発明に係る圧㸓ノ䉓歪膜型素了の製造力法は，基体部 と，䁷体部上に設けられ圧㫣ノ電歪膜と電楫膜とで満成される作動部え，を備え ，作動部は，その聂上層及び最下層が東極膜になるように，エ電ノ電歪慕上電極䐺とが交互に䅡首され，目つ，作動部と基体部とが烍成により・体化され，基体
造力法である。基体部をチタン元素が合有されたセラミックスで権成するための手段の连いにより，基体部と接する最下層の電極膜の材料として酸化チタンを名 0 － 3 ～－8質量 96 含有する導体材料を用い熱処理によって基体部にチタン・元素を含有させる方法（第1の製造方法）と，基体部を構成するセラミックス棣料として予め酸化チタンを合有する材料を用いる方法（第2の裂造万法）の2つがある。

 を構成するセラミックス材料として予め酸化チタンを台有する材䊀を井いつつ，

 る。
子を作製する過程について，具体的に説时する。先ず，基体部の作彆工提につい
法を用いて彆造することが好ましい。本発明に係る圧電ノ電㱏䐓型素子では，一休化さなるべき占休部と作䡃部とい接合信頼性がアクチュエータの特性を\＆名な る非党に重要なポイントになるが，基体部を一体的に成形することが可能なグリ
接公部位の信頼性が言く，且つ，剛性随椺に容易な方法だからである。又，グリ ーンシート穔層法は，生厓性や成形性に優扎るため，所定形状のアクチュエータ を短时問に，再現性上く作製するこ上を可能とするからである。
〈0056】グリーンシート䪹临法による基体部の作製工程は，例えば次の通 りである。先ず，酶化ジルコニウム等のセラミックふ枌末にバインジ，浴測，分
 ロールコーター法，トワターブレート法等ひ方法により所定か原さを有するグリ ーンシートを倠製する。

 テ゚レートとなるグリーンシート（ケ゚リーシシートAとよぶ）を1化と，長方形状
 リーシシート（ノノリーンシートBとよぶ）を1梳と，運通用孔部72，74が少 なくとも1個ずずっ形成され焼成该にせラミックスプレートとなるグリーンシート （！゚リーンシートCとよぶ）を 1 枚をを加てし用目する。開口部 76 の形状恃， すべて同一である必要はなく，所㕶の機能に心にて決㱏することが出来る。又，連通用孔部 7 2， 74 加外部空間と連通了ている限りにおいて，莗话用孔，部 72

 グリーンシートRにおいて，開口部 76 を前列させて形成することにより複数個

【0058】グリーンシートA，B，Cの稙甶腒序には，特に制限がなく，任

意の順序で䅡首可能である。例えば，グリーンシートA，B，Cを順次重ね合わ せた後に，上着によりセラミックグリーン積層体を得る方法でもよく，又，グリ ーンシート・A，Bを重ね合わせ，世着により・体化物袁得た後に，この 体化物 にグリーンシートトCを重ね合わせ，圧着によりセラミックグリーン積層体を得る方法でもよい。
 ることが山来る。又，センミックス附末，バァンダを卞体としたペースト，ステ リー等をグリーンシート上に祭布，㠲別し，接合補助層とすることであ，皘層性 の向上が図れる。このとき隹用するセラミッウス粷末は，信賴性確保の点で，ク゚ リーンジ・トに使用されたセラミッウスを同ー又は頻似した組成のものを用いる ことが望ましい。
【0060】グリーンジ・トA，B，Cの枚数は限定されず，少なくこも含1枚のグリーンシートA，C 1枚のグリーンシートBと家使用して，セラミックク゚リーーン積層体を作製するこ とが出来る。尚，上記したグリーンシート・䚀層法洔，南くまでも例示したむので克り，すべてを示したものではなく，例えば，襀層数が 4 以上の場合に扫いても ，圧者回数や順序は特に限定されず，セラミックグリーン䅡層体を用㥯する方法 も，これにに限定されるものではない。
積層体とする。セラミックグリーン積凬体は，1200～1600 C 程度の温度 で焼成されるか，焼成によって得られたセラミック積層体が总圈しない反りを有 したちのとなる娒合がある。その場合には，上記燅成温度に近い温度で，啠しを載せて再焼成（以下，必以修止ともいう）して平坦化することが好ましい。里し としては，平坦なソルミナ封の务孔䨘なセラミック板を使用することが好ましい －入，反り修止においては，姷成に引き続いた形で実施する他，恠成時に重しを予め载せて，㹸成と同時に平坦化方る方法を探用することが出来る。
 によってセラミックタリーン程厦体上に作動部忘形成した後に瓳成する子順でお っても槚わないか，作動部を形成する前に予め焼結してセラミック積層体として

おく手順の方が，より寸沄精度が高まり，作動部の反りを抑えることが可能とな るので，より好ましい。
〔0063］以上，グリーンシートト䅡層法による基体郘の作裂工程を説明した が，基体部の作製にかかり，上記したグリーンシートを用いた製造方法の他に，成形型を用いた加圧成形法や錆込成形法，射出成形法かフォトリソグラフィィ敕を用 いて作製するここも可能である。
【0064】次に，作動部の作製て程について說明する。作䣦部は，㴗俱，㫗膜管の膜形成法を用いて製造することが酊むしい。接着剤を用いることなく作動
 が荅易となるからである。
〔0065】作動部を構成する工電ノ電歪朕及び電想渎は，セラミック榣層休 の表面にスクリーン印刷法，ディッビング法，殓布法，䉓気泳動埖積法然め原胶形成法，又は，イオンビーム法，スパッタリング法，实空烝着，イオシプレーテ ィング汰，化学気相䓝者法（CVD），メッキ等0溥脱法により，形成すること が出柬る。そして，上記した膜形成法は，1 庿当たり1回だけでなぐ䘨数回施す ことが好ましい。
〔0066】圧電」電歪䐜は，疐营形成法により形成ずることが，より㚥まし
 （セラミックス粒子）を主成分とするペームトやスラリー，邓は，サスバンショ

 は，1～7 $\mu \mathrm{m}$ であることが好ましい。高い圧電特性を得ること加出来るからて ある。

 である。一方，以クリーン印刷法は，䐜形成とパターン形成とを同時に忓来るた め，やはり本発明の製造力法とし，「好ましく埰用される。例ほば，作到部の圧電 ，電歪膜の形成手段として，初回にメクリーン日刷汒突用い，2回目以降怔雷気泳動堆樍法を用いるといった方法も好通に用いられしる。
 8を例にとつで作動部しつ作㗉工程を説明する。先ず，燰に基体部44になるだ
 ご烍成し，そい後に，得らすしたセラミック䅡居体の表面の所定位置に下部の雷極

有する漂体材料を用いる。この酸化チタンのチタン元袁が樮成（熱処理）により基体部側に拡敬し，基体部がチタン元卖を仓有方るようになる。

 い電楫リードな印刷し焼成すきてばよい。

型索于108が2㞔の圧電ノ電题膙79を有するのに対して，m＋1層の圧雷ノ電歪膜79を有する圧雷ノ刑焉獏型素子を形成することが可能である。このえき

度Tm2で1回だけ続或されるのに対し，中間に形成したの圧㸓ノ電昰膜 7 9は焼成温度Tiv1T何問か焼成された後に泋成温度Tm2で1回焼成されるので，焼成温店Tm1学紶成温度 Tm2 より低い温度にすることによって，各正電／電歪膜の焼成度合い学揃えるこよが归来るからである。

用い，止電ノ電丕材料のペーストの流動性を調整することにより，短于方向ひハバ ターン端へ近づくに従い㬴厚が萿くなるような形笖をとることが出来る（図6参

 66 の形状は，図7の如き単种仅状に比較して，屈曲葰位を発現し昜い。これは
 を劣化させる残留応力が低滅されるためと考えられる。
〔0073】又，圧雨／電弪膜の短手方向の寸法が臵い（僛ね200 20 m 以下 ）压電ノ電歪膜型案子を作製するにあたり，奄極俱を，卜層から上層へ行くに従 つて幅広にすることにより，上部に形成される圧蛇ノ筺想朕を下部に形成されしろ壬電ノ䉓歪膜より大きく歪むようにすることが出来る。その跸果，曲げ务然が高 まり，屈曲変位が有矨に発現される。管棫膜の幅の差（広くする量）虫，電界分市を考慮して最適化することが琹ましい。例えば，ある電極搃い下層ひ軋極膜と
 である。

10074 1 作動部の熄成陆，通当な材料を選択するごとによって，電樞脱及

 る。何れの方法によこても，昰休部と接する作動部の最下周の霓框营に，含表れる酸化チタンメチタン元素を，焼成により基伦部俐に拡散きけ丁，基体部にチタン元桼を它有させることは可能である。
形成しておき，セラミックグリーン積層体と作動部とを同時袪成ずることも行ま

しい。同時統成にあにつては，作動部の全栱成腸を刘象としってもよく，下部の需極とセラミックグリーン積関休のみを同時綂战してもよく，あるい洔，上部の電極を除く他め栱成䐓とセラミッワグリーこ䋶届体とを间時焼成してもよく，その他䅱々ひう力法から挙げられる。例えば，金型を用いたプレス，成开法きスラリー原料 な用いたテープ成形法等によって「圧要ノ゙電歪膜を成形し，これをせラミックダり
蛼成することが出来る。この方法では，上記した䐓形成法を用いで，圧電ノ゙電盃

 に能成することも可能である。

 ラミックグリーシ積首体を同時焼成する場合には，両者の境成条件等統一するこ とが必要くらる。
［0077］次に，第2の製造方法について説朋する，第2の製造方法は，其体部を構成するセラミックス材料としてやぬ酸化于タンを官有ず材料を用いる
得らにあのジリーンシートの作製に際し，全てのグリーンシートの原料をして，邓は，少なくともグリーンシートAの原料として，酸化ジルコニウム等のセラミ
 スシリーを作製し用いること，及び，其体部已按する价動部の最下層の電極膜の材料として酸作：チタンを含有する導体材料を用いる必要がないこと，の2点を除 こて，殡1の製造方法に準じる方法である。従て，第2の製造方法に基づく本

【0078】（実施例）以下，本発明の効県を具体的な実施例に基づいて説明す る。
【0079】（実施例1）基体部がチタン开素を合有するセラミックスで構成

 75 の全ち扇を有し，所定の幅の䉓極膜73，75，77と圧電」電歪膜79と が父互に積居される㛿成を有する。

 びマグネシウムニオブ蛟鉛の三冗采材料に酸化ニッケルを淩加した材料，電極暯 $75 は$ 昷，をそれぞれかいた。
［0082］先ず，グリーンシートト稙呞法を用いてセラミックグリーン槙尾体

脱及び需極脱を形成し，作動部 78 を作製し，た。より詳細には，訧ず，基体部 4

 3層を一括してよ250゚にく珖成し，電極貺77及び基体部44と一体化した
膜77は雨気的に同觉位となるようなバターンとした。これら作制部78を满成

 EPMA）を用い下，チタン元晜の含有量を湘定した結果，チタン西素は鼠标膜 770投影する部位に多く存在し，その含有連は酸化チタン和当で2．0啠是\％ であった。

 ことを利用したものである。具体的には，基体部 4 4 のキャビティ46問谏の㫗
 10 の諍雷容呈から比誘乘率を求め，ぞの変化から残留応力を評僻した。静電窓苗の偵を表1にぶす。

「0084】
（表1）

	静霓容量 スリット加工前	静電䆓噭 スリット加工後
麦施例 1	330 pF	330 pF
比较例 1	280 pH	330 pF

並列状態の値である。静電客量は，スリット加エ前で設計値（3 3 U p ト ）通り
 600 であった。そしてこの䇦安容量はスリット加工後でも殆と変化はみられた かった。

振助板66の断面を，奏施例1と同様な手洼によりチタン元素な含有量を測定し た踣果，比較例1では梄めて微量で 0.1 質量\％以下であった。能管容量ひ値を考」に示す。

に満たず，且こ，スリット加T，により静電容星の値が大きく変化する（增加する ），セラミック基休に酸化テウンを含有しない従来の下雷ノ電云膜型素子120 は，圧電バ電弪膜 79 に有書な応力広理留しているものえ考えられる。つまり，

 いといえる。

 い，優きた圧電，電歪膜型幸子が提供され，一方，ヒンサ等であるば，センシン

 －上り高筫積化が㧔められてている圴時のケンクジュットプリンタのブリントヘッ ト用等（た）シチュにータとして特に奸適である。
 から，アシチュエータの他に，トリンスゾ」ー サや，周波数领域機能部占（フィ ルジ）トランス等の振駆子，共振子，発振了，デハスクリミネータ等の能動素
用されて得る。

請求の䉓囲

1．基伭部え，前記基体部上に設けられ圧電ノ電歪䐜と电样䐜とで横成される作
 ，前記作䣦部が，その最上層及び最下層が㐬記䨒極暯になるように父互に䅛首さ
 は焼成により一体化されて，
型素子。

2．前記其体部は，前記作動部の最下屠の電極膜により投影された投影部のテシ ン开素の含有虽が，非投影郘のチタン元素の含有量と界なる詰求頂1に記本の生の雷ノ蕾秀膜型犊子。
3．前記找影部のチタン元素の含有量が，前記非投影部のチタン元素の它方甾上 り多い請求項 2に記鈛の工電，／雷歪膜型素子。

て，チタン元素を酸化チタン相当量で 0 ，3～1質罿\％含有する請求項 1 に記顿 の圧電／電歪膜型素子。
こ．前記基体部を抂成するセラミックスが，酸化ジルコニウムである諳求偵1に記载の圧電ノ䉓歪膜型絜子。
6．前記䍐体部の厚さが，2～10 $\mu \mathrm{m}$ である誚求頁」に記載の圧電ノ䉓焉膜型采子。
〈電丕膜型采子。

 ／需丕腺型素子。
作動部コ，を備え，前記作動副が，その最上層及び最下層が前記電極䠑になるよ，
部と前记县体部とは旡成により一体化さすい，前記基体部が，チタン元素壳含有す

 をせる圧䨌ノ電歪膜型素子の製造方法。
11．前記霓枢膜の材料に含有される酸化チタンの半均粒子径が，0．05～0
－ $4 \mu \mathrm{~m}$ である請求頃 10 に記载の正電ノ電歪膜型丞子0整䢔方洼。
作致部え，を備え，前記作動部が，その皆上層父び最下層が前記需㥛瞙になるよ

子の製造方法。

開示内容の要約

 とを有し，且コ，作動䣋と基体部とは焼成により一体化され，基住部が，チタン
滕些素子は，焼成にかかる残留応力が给ど存在しないことから，同一駆動䉓任ぐ －より大きな奚位が得られ，后答速度がより速く，発生力がより大きい。

